Twitter Sentiment Analysis Using Recurrent Neural Network

نویسندگان

چکیده

Being one of the largest social media platforms, Twitter has a diverse community collaborating on multitude ideas. With large amounts data being generated and collected every day, it is perfect platform to implement machine learning algorithms analyze information in different tweets. A recurrent Neural Network (RNN) specific algorithm that used solve problems involving sequential such as texts or time series. In this paper, we use RNNs classify given tweet either positive negative sentiment. The RNN model describe below was able reach an accuracy 76%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Context-Sensitive Twitter Sentiment Classification Using Neural Network

Sentiment classification on Twitter has attracted increasing research in recent years. Most existing work focuses on feature engineering according to the tweet content itself. In this paper, we propose a contextbased neural network model for Twitter sentiment analysis, incorporating contextualized features from relevant Tweets into the model in the form of word embedding vectors. Experiments on...

متن کامل

Twitter Sentiment Analysis with Recursive Neural Networks

In this paper, we explore the application of Recursive Neural Networks on the sentiment analysis task with tweets. Tweets, being a form of communication that has been largely infused with symbols and short-hands, are especially challenging as a sentiment analysis task. In this project, we experiment with different genres of neural net and analyze how models suit the data set in which the nature...

متن کامل

Explaining Recurrent Neural Network Predictions in Sentiment Analysis

Recently, a technique called Layer-wise Relevance Propagation (LRP) was shown to deliver insightful explanations in the form of input space relevances for understanding feed-forward neural network classification decisions. In the present work, we extend the usage of LRP to recurrent neural networks. We propose a specific propagation rule applicable to multiplicative connections as they arise in...

متن کامل

Sentiment Analysis using Recursive Neural Network

This work is based on [1] where the recursive autoencoder (RAE) is used to predict sentiment distributions. In this project, I compare the performance of several different tree building schemes and find that greedily merging nodes with minimal autoencoder error gives the best performance, which is better than using the correct parsing tree, among others. I then apply the recursive neural networ...

متن کامل

UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment Classification

This paper describes our deep learning system for sentiment analysis of tweets. The main contribution of this work is a process to initialize the parameter weights of the convolutional neural network, which is crucial to train an accurate model while avoiding the need to inject any additional features. Briefly, we use an unsupervised neural language model to initialize word embeddings that are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International journal of science & technoledge

سال: 2022

ISSN: ['2321-919X']

DOI: https://doi.org/10.24940/theijst/2022/v10/i10/st2210-003